

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Level In Mechanics (WME01) Paper 01

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mark  | S   |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 1.                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |
| (a)                | CLM: oe $mU = mS + 3mS$<br>OR $A: -I = m(S - U)$ and $B: I = 3mS$ AND eliminate $I$ to give $-3mS = m(S - U)$ oe                                                                                                                                                                                                                                                                                                                                           | M1    |     |
|                    | $S = \frac{1}{4}U \text{ or } 0.25 U$                                                                                                                                                                                                                                                                                                                                                                                                                      | A1    | (2) |
| (b)                | For A: $\pm m(\frac{1}{4}U - U)$                                                                                                                                                                                                                                                                                                                                                                                                                           | M1A11 | it  |
|                    | $\frac{3}{4}mU$                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1    | (3) |
| Alternative        | For B: $\pm 3m\frac{1}{4}U$                                                                                                                                                                                                                                                                                                                                                                                                                                | M1A1  | it  |
|                    | $\frac{3}{4}mU$                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1    | (3) |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | (5) |
| 1(a)               | M1: CLM equation with correct terms, condone sign errors and cancelled <i>m</i> 's or consistent extra <i>g</i> 's  N.B. If they use 2 impulse-momentum equations, each equation must have the correct terms but condone sign errors. They must then eliminate the impulse to produce an equation in <i>m</i> , <i>U</i> and <i>S</i> only.  N.B. Allow the use of <i>v</i> or similar for <i>S</i> in the working but must use <i>S</i> for their answer. |       |     |
| 1/1)               | A1: cao (A0 if <i>m</i> 's not cancelled)                                                                                                                                                                                                                                                                                                                                                                                                                  | -     |     |
| 1(b)               | M1: Impulse-momentum for <i>A</i> or <i>B</i> , with correct terms, condone sign errallow <i>S</i> for final speed but M0 if <i>m</i> omitted or extra <i>g</i> A1ft: Correct expression in terms of <i>m</i> and <i>U</i> , ft on the <b>magnitude</b> of the                                                                                                                                                                                             |       |     |
|                    | A1 cao (must be positive and a multiple of $mU$ )                                                                                                                                                                                                                                                                                                                                                                                                          | п Д.  |     |

| Question<br>Number | Scheme                                                                                                     | Ма | rks |
|--------------------|------------------------------------------------------------------------------------------------------------|----|-----|
| 2.                 | 10<br>120° 8<br>10<br>Correct triangle                                                                     | M1 |     |
|                    | Correct triangle $(F^2) = 8^2 + 10^2 - 2 \times 8 \times 10 \cos \theta  \text{where } \theta < 180^\circ$ | M1 |     |
|                    | $(F^2) = 8^2 + 10^2 - 2 \times 8 \times 10 \cos 120^\circ$                                                 | A1 |     |
|                    | $F = \sqrt{244} = 2\sqrt{61}$ or 16 (N) or better (15.620499)                                              | A1 | (4) |
|                    | $F = \sqrt{244} = 2\sqrt{61}$ of 16 (N) of better (15.620499) <b>OR:</b>                                   | AI | (4) |
|                    | $\pm (10 + 8\cos 60^{\circ})$ and $\pm 8\sin 60^{\circ}$                                                   | M1 |     |
|                    | Use of Pythagoras on their <b>combined</b> components                                                      | M1 |     |
|                    | $F^2 = (10 + 8\cos 60^\circ)^2 + (8\sin 60^\circ)^2$                                                       | A1 |     |
|                    | $F = \sqrt{244} = 2\sqrt{61}$ or 16 (N) or better (15.620499)                                              | A1 | (4) |
|                    |                                                                                                            |    | (4) |
|                    | Notes                                                                                                      |    |     |
| 2.                 | M1: <b>Correct</b> triangle with lengths and the angle (arrows not needed), seen or implied.               |    |     |
|                    | M1:Use of cosine rule with correct structure but any angle < 180°                                          |    |     |
|                    | A1: Correct expression with or without root                                                                |    |     |
|                    | A1: cao                                                                                                    |    |     |
|                    | OR:                                                                                                        |    |     |
|                    | M1: Two <b>correct</b> components (allow inclusion of <b>i</b> and <b>j</b> )                              |    |     |
|                    | M1:Use of Pythagoras using their combined i cpts and j cpts                                                |    |     |
|                    | A1: Correct expression with or without root                                                                |    |     |
|                    | A1: cao                                                                                                    |    |     |
|                    | <b>N.B.</b> A scale drawing can score Max M1M0A0A0                                                         |    |     |

| Question<br>Number | Scheme                                                                                                                                                                                                                           | Mar          | ·ks |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| 3.                 | For $P$ : $4mg - 3mg = 4ma$<br>For both: $4mg + 2mg - T = (4+2)ma = 6ma$ Any two of these<br>For $Q$ : $2mg + 3mg - T = 2ma$                                                                                                     | M1A1<br>M1A1 |     |
|                    | Solve for <i>T</i>                                                                                                                                                                                                               | DM1          |     |
|                    | $\frac{9mg}{2}$ , 4.5mg oe                                                                                                                                                                                                       | A1           | (6) |
|                    |                                                                                                                                                                                                                                  |              | (6) |
|                    | Notes                                                                                                                                                                                                                            |              |     |
|                    | N.B. Use the mass in the 'ma' term in each equation of motion to                                                                                                                                                                 |              |     |
|                    | determine to which part of the system the equation refers.                                                                                                                                                                       |              |     |
|                    | Allow a replaced by $-a$ in both equations.                                                                                                                                                                                      |              |     |
|                    | Enter marks on ePEN in the order in which equations appear.                                                                                                                                                                      |              |     |
|                    | M1: Equation of motion with correct terms, condone sign errors                                                                                                                                                                   |              |     |
|                    | A1: Correct equation                                                                                                                                                                                                             |              |     |
|                    | M1: Equation of motion with correct terms, condone sign errors                                                                                                                                                                   |              |     |
|                    | A1: Correct equation                                                                                                                                                                                                             |              |     |
|                    | DM1: Dependent on both M's, for solving for T (must be in terms of                                                                                                                                                               |              |     |
|                    | mg)                                                                                                                                                                                                                              |              |     |
|                    | A1: Any equivalent expression of the form <i>kmg</i> .                                                                                                                                                                           |              |     |
|                    | <b>N.B.</b> For the <i>P</i> and <i>Q</i> equations, allow M1 if they have <i>T</i> instead of 3mg and it's VERY <b>clear</b> that <i>T</i> is the tension in the connecting string and not the tension they are trying to find. |              |     |

| Question<br>Number | Scheme                                                                                                | Marl | ks  |
|--------------------|-------------------------------------------------------------------------------------------------------|------|-----|
| 4(a)               | $M(C)$ , $Mg \times 4.5 + 1.2g \times 2 = 4g \times 1.5$                                              | M1A1 |     |
|                    | M = 0.8 oe                                                                                            | A1   | (3) |
|                    | Other possible equations:                                                                             |      |     |
|                    | $(\uparrow),  Y = 4g + 1.2g + Mg$                                                                     |      |     |
|                    | $M(A)$ , $5Y = 1.2g \times 3 + 4g \times 6.5 + Mg \times 0.5$                                         |      |     |
|                    | $M(B)$ , $1.5Y = 1.2g \times 3.5 + Mg \times 6$                                                       |      |     |
|                    | $M(G)$ , $2Y + Mg \times 2.5 = 4g \times 3.5$                                                         |      |     |
|                    | from which <i>Y</i> would need to be eliminated.                                                      |      |     |
| <b>4(b)</b>        | $M(E), R_C \times 0.6 = 1.2g \times 2.6$                                                              | M1A1 |     |
|                    | $R_C = 5.2g$ isw                                                                                      | A1   | (3) |
|                    | Other possible equations:                                                                             |      |     |
|                    | $(\uparrow), Xg + 1.2g = R_C$                                                                         |      |     |
|                    | $M(C)$ , $Xg \times 0.6 = 1.2g \times 2$                                                              |      |     |
|                    | $M(A), 1.2g \times 3 + Xg \times 5.6 = R_C \times 5$                                                  |      |     |
|                    | $M(B)$ , $1.2g \times 3.5 + Xg \times 0.9 = R_C \times 1.5$                                           |      |     |
|                    | $M(G)$ , $Xg \times 2.6 = R_C \times 2$                                                               |      |     |
|                    | from which $Xg$ would need to be eliminated. (Note that $X = 4$ )                                     |      |     |
|                    | Xg may appear as a single letter.                                                                     |      |     |
|                    | NT /                                                                                                  |      | (6) |
|                    | Notes Notes                                                                                           |      |     |
| <b>4</b> (a)       | M1: For an equation in $M$ only, with correct number of terms, condone sign errors and missing $g$ 's |      |     |
|                    | A1: Correct equation                                                                                  |      |     |
|                    | A1: cao                                                                                               |      |     |
| <b>4(b)</b>        | M1: For an equation in $R_c$ only, with correct number of terms, condone                              |      |     |
| <b>4</b> (D)       | sign errors and missing g's                                                                           |      |     |
|                    | A1: Correct equation                                                                                  |      |     |
|                    | A1: $\frac{26g}{5}$ , 51 or 51.0                                                                      |      |     |

| 5(a) $s = \frac{1}{2} \times 9.8 \times 5^{2}$<br>= 123  or  120  (m)<br>$v = 9.8 \times 5 = 49 \text{ OR } v = \sqrt{2 \times 9.8 \times 122}.$<br>OR $122.5 = 5v - \frac{1}{2} \times 9.8 \times 5^{2} => v = 49$<br>$250g - 3200 = \pm 250a$<br>Correct value for their $a$ (3 or $-3$ )<br>$v^{2} = 49^{2} - 2 \times 3 \times (520 - 122.5)$<br>$v = 4 \text{ (m s}^{-1})$<br>N.B. They may do (c) first and then use $v = 49 + (-3 \times 15)$ OR $(520 - 122.5) = v = 4 \text{ (m s}^{-1})$<br>5(c) $4 = 49 - 3t$ | $ \begin{array}{c}                                     $                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 5(b) $v = 9.8 \times 5 = 49 \text{ OR } v = \sqrt{2 \times 9.8 \times 122.}$ $OR 122.5 = 5v - \frac{1}{2} \times 9.8 \times 5^{2} => v = 49$ $250g - 3200 = \pm 250a$ $Correct value for their a (3 or -3)$ $v^{2} = 49^{2} - 2 \times 3 \times (520 - 122.5)$ $v = 4 \text{ (m s}^{-1}\text{)}$ $N.B. \text{ They may do (c) first and then use}$ $v = 49 + (-3 \times 15) \text{ OR } (520 - 122.5) = 0$ $v = 4 \text{ (m s}^{-1}\text{)}$ $5(c) \qquad 4 = 49 - 3t$                                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    |
| OR $122.5 = 5v - \frac{1}{2} \times 9.8 \times 5^2 => v = 49$<br>$250g - 3200 = \pm 250a$<br>Correct value for their $a$ (3 or -3)<br>$v^2 = 49^2 - 2 \times 3 \times (520 - 122.5)$<br>v = 4 (m s <sup>-1</sup> )<br>N.B. They may do (c) first and then use $v = 49 + (-3 \times 15)$ OR $(520 - 122.5) = v = 4$ (m s <sup>-1</sup> )<br>v = 49 - 3t                                                                                                                                                                   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                   |
| OR $122.5 = 5v - \frac{1}{2} \times 9.8 \times 5^{2} => v = 49$ $250g - 3200 = \pm 250a$ Correct value for their $a$ (3 or $-3$ ) $v^{2} = 49^{2} - 2 \times 3 \times (520 - 122.5)$ $v = 4 \text{ (m s}^{-1}\text{)}$ N.B. They may do (c) first and then use $v = 49 + (-3 \times 15)$ OR $(520 - 122.5) = v = 4 \text{ (m s}^{-1}\text{)}$ $5(c) \qquad 4 = 49 - 3t$                                                                                                                                                  | M1A1 A1 M1 A1ft A1 A1 A1 (7) e their t value to obtain v: $=15v - \frac{1}{2} \times (-3) \times 15^2 \text{ M1A1ft}$ A1 |
| Correct value for their $a$ ( 3 or $-3$ ) $v^{2} = 49^{2} - 2 \times 3 \times (520 - 122.5)$ $v = 4 \text{ (m s}^{-1}\text{)}$ N.B. They may do (c) first and then use $v = 49 + (-3 \times 15)$ OR $(520 - 122.5) = 0$ $v = 4 \text{ (m s}^{-1}\text{)}$ 5(c) $4 = 49 - 3t$                                                                                                                                                                                                                                             | e their $t$ value to obtain $v$ : $= 15v - \frac{1}{2} \times (-3) \times 15^{2}  M1A1ft$ A1  A1                         |
| $v^{2} = 49^{2} - 2 \times 3 \times (520 - 122.5)$ $v = 4 \text{ (m s}^{-1}\text{)}$ <b>N.B.</b> They may do (c) first and then use $v = 49 + (-3 \times 15)$ <b>OR</b> $(520 - 122.5) = 0$ $v = 4 \text{ (m s}^{-1}\text{)}$ <b>5(c)</b> $4 = 49 - 3t$                                                                                                                                                                                                                                                                  | M1 A1ft  A1 (7)  The their $t$ value to obtain $v$ : $= 15v - \frac{1}{2} \times (-3) \times 15^2  \text{M1A1ft}$ A1     |
| $v = 4 \text{ (m s}^{-1})$ N.B. They may do (c) first and then use $v = 49 + (-3 \times 15)$ OR $(520 - 122.5) = 0$ $v = 4 \text{ (m s}^{-1})$ 5(c) $4 = 49 - 3t$                                                                                                                                                                                                                                                                                                                                                        | their t value to obtain v:<br>$=15v - \frac{1}{2} \times (-3) \times 15^{2}  M1A1ft$ A1                                  |
| N.B. They may do (c) first and then use $v = 49 + (-3 \times 15)$ OR $(520 - 122.5) = v = 4 \text{ (m s}^{-1})$ 5(c) $4 = 49 - 3t$                                                                                                                                                                                                                                                                                                                                                                                       | their t value to obtain v:<br>= $15v - \frac{1}{2} \times (-3) \times 15^2$ M1A1ft<br>A1                                 |
| N.B. They may do (c) first and then use $v = 49 + (-3 \times 15)$ OR $(520 - 122.5) = v = 4 \text{ (m s}^{-1})$ 5(c) $4 = 49 - 3t$                                                                                                                                                                                                                                                                                                                                                                                       | $=15v - \frac{1}{2} \times (-3) \times 15^{2}  M1A1ft$ A1                                                                |
| $v = 4 \text{ (m s}^{-1})$ $5(c) 	 4 = 49 - 3t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1                                                                                                                       |
| <b>5(c)</b> $4 = 49 - 3t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1                                                                                                                       |
| $(\Delta Q \pm \Delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          |
| <b>OR</b> $(520-122.5) = \frac{(49+4)}{2}t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                          |
| <b>OR</b> $(520-122.5) = 49t - \frac{1}{2} \times 3t^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                          |
| <b>OR</b> $(520-122.5) = 4t + \frac{1}{2} \times 3t^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                          |
| $t = 15$ (other root of quadratic is $\frac{53}{3}$ w                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | which leads to $v < 0$ ) A1                                                                                              |
| Total time = $5 + 15 = 20$ (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1ft (3)                                                                                                                 |
| 5(d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1 shape                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1 ft figs                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>→</b> (2)                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (14)                                                                                                                     |
| Notes  Notes  M1: Complete method to find the distor                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                      |
| 5(a) M1: Complete method to find the distar                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ice                                                                                                                      |
| (b) B1: 49 or -49. Allow 5g or -5g or 49 <sup>2</sup> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2401) seen.                                                                                                             |
| M1: Equation of motion, correct terms,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                          |
| A1: Correct equation (allow + or –)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                        |
| A1: cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          |
| M1: Complete method to find speed at g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                          |
| M0 if they use $u = 0$ either explicitly in time, which is then used in (b).                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b) or implicitly, by using it in (c) to get the                                                                         |
| A1ft: Correct equation, ft on their $s$ , $v$ a                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd a                                                                                                                     |
| <b>N.B.</b> This mark can be awarded even if                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                          |
| A1: cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          |

| (c)          | M1: Complete method to find time from when the parachute opens to when <i>P</i> lands        |
|--------------|----------------------------------------------------------------------------------------------|
|              | on the ground (must have found and use a new <i>a</i> )                                      |
|              | M0 if they use $s = 520$ and/or $u = 0$                                                      |
|              | A1:cao.                                                                                      |
|              | A1ft: Their $t + 5$                                                                          |
|              | <b>N.B.</b> The final answer should be rounded to 2 or 3 sf, if they haven't already been    |
|              | penalised following use of $g = 9.8$ earlier in the question.                                |
| (4)          | B1: Correct shape (B0 if continuous vertical line at the end or graph ends on the <i>t</i> - |
| ( <b>d</b> ) | axis)                                                                                        |
|              | B1ft:Correct figs, ft on their 49, 4 and 20, but B0ft if they just assume it stops as it     |
|              | reaches the ground.                                                                          |
|              | The ft is only available if the graph has just 2 straight lines, one starting at the origin  |
|              | with positive gradient and the second line has negative gradient with second line not        |
|              | meeting the <i>t</i> -axis.                                                                  |
|              | This B1ft is available if the graph has a vertical line at the end but is otherwise          |
|              | correct.                                                                                     |

| Question<br>Number | Scheme                                                                                                                                                                                                            | Ма   | ırks |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 6(a)               | $R + T\sin\theta = mg$                                                                                                                                                                                            | M1A  | 1    |
|                    | $T\cos\theta - F = 0$                                                                                                                                                                                             | M1A  | 1    |
|                    | $F = \frac{1}{3}R$                                                                                                                                                                                                | B1   |      |
|                    | Solve for <i>T</i> , in terms of <i>mg</i>                                                                                                                                                                        | DM1  |      |
|                    | $(T) = \frac{1}{3}mg$                                                                                                                                                                                             | A1   | (7)  |
| (b)                | $F = \frac{1}{3}mg$                                                                                                                                                                                               | B1   |      |
|                    | $F = \pm ma$ <b>OR</b> W.D. = $\pm Fd$                                                                                                                                                                            | B1   |      |
|                    | $\left(\frac{1}{2}u\right)^{2} = u^{2} - 2(\frac{1}{3}g)d$ $\frac{1}{2}m\left(\frac{1}{2}u\right)^{2} = \frac{1}{2}mu^{2} - \frac{1}{3}mgd$ $d = \frac{9u^{2}}{8g} \text{ oe}$ $d = \frac{9u^{2}}{8g} \text{ oe}$ | DM1. | A1   |
|                    | $d = \frac{9u^2}{8g} \text{ oe}$ $d = \frac{9u^2}{8g} \text{ oe}$ $d = \frac{9u^2}{8g} \text{ oe}$                                                                                                                | A1   | (5)  |
|                    |                                                                                                                                                                                                                   |      | (12) |
|                    | Notes                                                                                                                                                                                                             |      |      |
| <b>6(a)</b>        | M1: Vertical resolution, with correct terms, condone sign errors and $\sin/\cos$ confusion. Allow if they use $\sin(\frac{3}{5})$ or similar.                                                                     |      |      |
|                    | A1: Correct equation                                                                                                                                                                                              |      |      |
|                    | M1: Horizontal resolution, with correct terms, condone sign errors and $\sin/\cos$ confusion. Allow if they use $\cos(\frac{4}{5})$ or similar.                                                                   |      |      |
|                    | A1: Correct equation                                                                                                                                                                                              |      |      |
|                    | B1: Seen anywhere, including on a diagram                                                                                                                                                                         |      |      |
|                    | DM1: Dependent on both M's                                                                                                                                                                                        |      |      |
|                    | A1:cao. Accept 0.33 mg or better.                                                                                                                                                                                 |      |      |
| 6(b)               | B1: Seen anywhere, including on a diagram                                                                                                                                                                         |      |      |
|                    | B1: $F = \pm ma$ where F is friction, (allow + or –) <b>OR</b> Fd                                                                                                                                                 |      |      |
|                    | DM1: Complete method, dependent on the previous B mark, using a                                                                                                                                                   |      |      |
|                    | new dimensionally correct acceleration, to produce an equation, with correct no. of terms, in $d$ , $u$ and $g$ , condone sign errors.                                                                            |      |      |
|                    | <b>OR</b> , using work-energy principle using $Fd$ , where $F$ is friction, to produce an equation, with correct no. of terms, in $d$ , $u$ and $g$ , condone sign errors                                         |      |      |
|                    | A1: Correct equation                                                                                                                                                                                              |      |      |
|                    | A1: cao (must be $d = $ , seen or implied, <b>but allow</b> $s$ <b>in the working</b> )                                                                                                                           |      |      |

| Question<br>Number | Scheme                                                                                                                                                                                | Ma          | rks  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|
|                    | <b>N.B.</b> Answers to (a) and (b) should be in terms of <b>i</b> and <b>j</b> , but only penalise once. Column vectors can be used in working.                                       |             |      |
| <b>7</b> (a)       | $\mathbf{v}_B = (20\sin\alpha)\mathbf{i} + (20\cos\alpha)\mathbf{j}$ oe e.g. use of Pythagoras but must get to an answer                                                              | M1          |      |
|                    | $=16i+12j \text{ (km h}^{-1}\text{)}$                                                                                                                                                 | A1          | (2)  |
| <b>7</b> (b)       | $(\mathbf{s} =) (10\mathbf{i} + 5\mathbf{j}) + t(16\mathbf{i} + 12\mathbf{j})  \text{or}  (10 + 16t)\mathbf{i} + (5 + 12t)\mathbf{j}$                                                 | M1<br>A1 ft | (2)  |
| <b>7</b> (c)       | $\overrightarrow{AB} = \mathbf{s} - \mathbf{r} = (10\mathbf{i} + 5\mathbf{j}) + t(16\mathbf{i} + 12\mathbf{j}) - [20\mathbf{j} + 40t\mathbf{i}]$                                      | M1          |      |
|                    | $\overrightarrow{AB} = [(10-24t)\mathbf{i} + (12t-15)\mathbf{j}] \text{ km} *$                                                                                                        | A1*         | (2)  |
| 7(d)               | 10-24t=0 and $12t-15=0$ <b>OR</b> $40t=10+16t$ and $20=5+12t$                                                                                                                         | M1          |      |
|                    | $t = \frac{5}{12}$ and $\frac{5}{4}$ or one correct t value which is then used in the other                                                                                           | A1          |      |
|                    | equation <b>correctly</b> to show that the equation is not true. <b>Different</b> <i>t</i> <b>values</b> oe so never collide*                                                         | A1*         | (3)  |
|                    | ALT 1:                                                                                                                                                                                | Al          | (3)  |
|                    | $\frac{(10-24t)^2 + (12t-15)^2 = 0  \text{(i.e. } 720t^2 - 840t + 325 = 0)}{(10-24t)^2 + (12t-15)^2 = 0}$ M1                                                                          |             |      |
|                    | $(-840)^2 - 4 \times 720 \times 325 \ (= -230,400) \ < 0$ A1                                                                                                                          |             |      |
|                    | Or roots $\frac{7 \pm 4i}{12}$ (calculator)                                                                                                                                           |             |      |
|                    | No real roots oe so never collide*  N.B. Must see justification for 'no real roots' to score either of the A marks.                                                                   |             |      |
|                    | ALT 2:                                                                                                                                                                                |             |      |
|                    | Finds minimum value of $720t^2 - 840t + 325$ or its square M1 root using derivative or completing the square or calculator                                                            |             |      |
|                    | 80 or $\sqrt{80}$ or $\overrightarrow{AB} = -4\mathbf{i} - 8\mathbf{j}$ (at $t = \frac{7}{12}$ )                                                                                      |             |      |
|                    | so never collide* A1*                                                                                                                                                                 |             |      |
|                    |                                                                                                                                                                                       |             |      |
| 7(e)               | 10 - 24t = 12t - 15 oe                                                                                                                                                                | M1          |      |
|                    | $t = \frac{25}{36} \text{ or } 0.69 \text{ or better}$                                                                                                                                | A1          |      |
|                    | $\overrightarrow{AB} = \left[ (10 - 24 \times \frac{25}{36})\mathbf{i} + (12 \times \frac{25}{36} - 15)\mathbf{j} \right] $ (km)<br>$AB = 20 \frac{\sqrt{2}}{3}, 9.4 $ or better (km) | M1          |      |
|                    | $AB = 20\frac{\sqrt{2}}{3}$ , 9.4 or better (km)                                                                                                                                      | A1          | (4)  |
|                    |                                                                                                                                                                                       |             | (13) |

|              | Notes                                                                                                       |  |
|--------------|-------------------------------------------------------------------------------------------------------------|--|
|              | M1: Condone sign errors and sin/cos confusion but both components                                           |  |
| 7(a)         | must be resolved. Allow if they use $\cos(\frac{3}{5})$ or similar.                                         |  |
|              | If $12\mathbf{i} + 16\mathbf{j}$ appears without working, award M1A0.                                       |  |
|              | A1: cao                                                                                                     |  |
| <b>7(b)</b>  | M1: Correct structure, condone slips                                                                        |  |
|              | A1ft: ft on their answer to (a)                                                                             |  |
| <b>7</b> (c) | M1: Allow $\mathbf{r} - \mathbf{s} \cdot \mathbf{r}$ and $\mathbf{s}$ must be substituted.                  |  |
|              | A1*: Correct given answer, correctly obtained                                                               |  |
|              | <b>N.B.</b> Need to see $\overrightarrow{AB}$ at the start or finish for the A1* and answer must            |  |
|              | be <b>exactly</b> as printed, ignoring [] and km.                                                           |  |
| <b>7(d)</b>  | M1: They may use $\mathbf{r} = \mathbf{s}$ with both $\mathbf{i}$ and $\mathbf{j}$ cpts equated.            |  |
|              | A1: Need both <i>t</i> values. Accept 0.42 or better and 1.25.                                              |  |
|              | A1*: Correct conclusion                                                                                     |  |
| 7(e)         | M1: Correct method                                                                                          |  |
|              | A1: cao                                                                                                     |  |
|              | M1: Sub their calculated t value into $\overrightarrow{AB}$ or $\overrightarrow{BA}$ , seen or implied, oe. |  |
|              | Note that this is an independent M mark.                                                                    |  |
|              | A1: cao                                                                                                     |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 8.                 | <b>N.B.</b> In parts (a) and (c), $g = 9.8$ could appear in the working but final answers must be using $g$ . In (b), $g = 9.8$ could be used in their answer. In (d), $g = 9.8$ could appear throughout in the working. <b>N.B.</b> For any equation of motion, if they use an incorrect mass in the 'ma' term, award M0 for the equation. However, if the correct mass has been used in (c), treat an error in the 'ma' term in (d) as a slip. |           |
| 8(a)               | $R = 2mg\cos\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                              | M1A1      |
|                    | $F = \frac{11}{36} \times 2mg \times \frac{12}{13} = \frac{22mg}{39} *$                                                                                                                                                                                                                                                                                                                                                                          | A1* (3)   |
| <b>8</b> (b)       | 3mg - T = 3ma                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1A1 (2)  |
| 8(c)               | $T - \frac{22mg}{39} - 2mg\sin\alpha = 2ma \qquad (T - \frac{4mg}{3} = 2ma)$ $\mathbf{OR:}  3mg - \frac{22mg}{39} - 2mg\sin\alpha = 5ma$                                                                                                                                                                                                                                                                                                         | M1A1      |
|                    | Solve for $a$ in terms of $g$<br><b>N.B.</b> Must reach $a = kg$ from <b>their</b> equations                                                                                                                                                                                                                                                                                                                                                     | M1        |
|                    | $a = \frac{1}{3}g *$                                                                                                                                                                                                                                                                                                                                                                                                                             | A1* (4)   |
| 8(d)               | $a = \frac{1}{3}g *$ $v^2 = \frac{2gh}{3}$                                                                                                                                                                                                                                                                                                                                                                                                       | B1        |
|                    | $-\frac{22mg}{39} - 2mg\sin\alpha = \pm 2ma \qquad \mathbf{OR}  \text{PE Gain} = 2mgd\sin\alpha$                                                                                                                                                                                                                                                                                                                                                 | M1        |
|                    | $\pm \frac{2g}{3} = a \qquad = \frac{10mgd}{13}$                                                                                                                                                                                                                                                                                                                                                                                                 | A1        |
|                    | $0 = \frac{2gh}{3} - 2 \times \frac{2g}{3} \times d$ $\frac{22mgd}{39} = \frac{1}{2} \times 2m \times \frac{2gh}{3} - \frac{10mgd}{13}$                                                                                                                                                                                                                                                                                                          | M1        |
|                    | $d = \frac{1}{2}h$ $d = \frac{1}{2}h$                                                                                                                                                                                                                                                                                                                                                                                                            | A1        |
|                    | Total distance = $\frac{1}{2}h + h = \frac{3}{2}h$                                                                                                                                                                                                                                                                                                                                                                                               | A1 ft (6) |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (15)      |

|              | Notes                                                                                                                                                                              |       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|              | <b>N.B.</b> For (a) and (c), if fractions for the trig ratios are not seen or implied, only penalise once.                                                                         |       |
| <b>8</b> (a) | M1: Resolve perp to the plane, correct terms, condone $\cos/\sin$ confusion and sign errors. Allow if they use $\cos(\frac{12}{13})$ or similar.                                   |       |
|              | A1: Correct equation                                                                                                                                                               |       |
|              | A1*: Correct given answer correctly obtained, must see $\frac{12}{13}$                                                                                                             | 1     |
| <b>8</b> (b) | M1:Equation of motion for <i>B</i> , correct terms, condone sign errors                                                                                                            |       |
|              | A1: Correct equation                                                                                                                                                               | İ     |
| 8(c)         | M1:Equation of motion for $A$ <b>OR</b> whole system, correct terms but allow $F$ , condone sign errors and sin/cos confusion.  Allow if they use $\sin(\frac{5}{13})$ or similar. |       |
|              | A1: Correct equation                                                                                                                                                               |       |
|              | M1: Solve for $a$ in terms of $g$ , need to see trig substituted and must be solving 2 equations in $T$ and $a$ <b>OR</b> using a whole system equation with correct terms.        |       |
|              | A1*: Correct given answer correctly obtained, must see $\frac{5}{13}$                                                                                                              | İ     |
|              | <b>N.B.</b> Allow a full verification, using the equations of motion for <i>A</i> and <i>B</i> <b>OR</b> the whole system equation.                                                |       |
| 0(4)         | B1: seen or implied                                                                                                                                                                |       |
| 8(d)         | M1:Equation of motion for A, correct terms, condone sign errors and sin/cos confusion                                                                                              |       |
|              | A1: Correct acceleration or deceleration of <i>A</i>                                                                                                                               | -<br> |
|              | M1: Complete method to find an equation in $d$ , $g$ and $h$ only, using a new calculated $a$                                                                                      |       |
|              | A1: cao                                                                                                                                                                            |       |
|              | A1ft: Their $d$ (which must be a multiple of $h$ ) + $h$ .                                                                                                                         |       |
|              | <b>N.B.</b> This mark is only dependent on the previous M.                                                                                                                         |       |
|              | OR: Using Work-energy                                                                                                                                                              |       |
|              | B1: cao                                                                                                                                                                            |       |
|              | M1: PE gain of A, condone sign errors and sin/cos confusion                                                                                                                        |       |
|              | A1: Correct PE gain  M1: Use of work-energy principle to obtain an equation in <i>m</i> , <i>d</i> , <i>g</i> and <i>h</i> only, using their PE expression                         |       |
|              | A1: cao                                                                                                                                                                            |       |
|              | A1ft: Their $d$ (which must be a multiple of $h$ ) + $h$ , with the final answer of the form $kh$ .                                                                                |       |